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Two problems of the encounter of several controlled objects described by nonlinear differential inclusions, 

with controls in the right-hand side are considered. Necessary conditions of optimahty are obtained in the 

form of a maximum principle. Previously such problems have been considered for the one-dimensional case 

[l] and for the multidimensional linear case.* 

1. LET R” be the n-dimensional real Euclidean space with the norm l/x// = (x1* + . . . + x~*)“~, 
x=(x1, . . ,) x,)ER”. We denote by conv(R) the space of all nonempty compact and convex 
subsets in R”. The metric h (A, B) between the sets A, B in conv(R”) is defined by the formula 

h (A, B) = min {r > 0 I A C B 4 S, (0), B C A + S, (0)}, 

where S,(a) is the sphere in R” with the radius z>O centred at the point a E R”. 
Denote by cc(R”) the space of all nonempty compact subsets of the space conv(R”) with the 

metric 

tPrik1. Mat. Mekh. Vol. 55, No. 5, pp. 752-758, 1991. 

ZRADZHEF M. 8, Investigation of one problem of optimal control of M-objects with multivalued trajectories, Odessa 

State University, Odessa. 1983. Unpublished manuscript, UkrNIINTI 30.0184, No. 137-Uk84. 
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Let LnM[to, T] be the space measurable and integrable (on [to, T]) multivalued mappings 
F: [to, T]+ conv (R”) with the metric 

T 

P (F, G) = s h (F (t), G 0)) dt 
t0 

Definition I [Z]. We say that the sequence {Fk( .)}br from LtiM[to, T] weakly converges to 
F( .) E LnM[to , T] if one of the following equivalent assertions holds: 

1. For each bounded and measurable function p: [to, T]+R” the sequence of sets 

{: PT 0) FK (t) dt}Zzl 
fs 

in R 1 converges to 
T II 
J PT (V (W 
to 

2. For each bounded and measurable function p : [to, T]-+ R” the sequence of real numbers 

converges to 

{j c (F‘K (a, P (a dtjzzl t. 

3. For each p E R” and measurable subset M from [to, T], the sequence 

converges to 

Suppose that the behaviour of the object is described by the following differential equations with 
multivalued right-hand side 

CC’ E F (t, x, IL), 2 E R”, u E R” (1.1) 
8’: R1 x R” x R’” --f conv (R”), 

where x is the phase vector, u is the control vector and F is a multivalued mapping (MVM). 
We assume that the initial state of the object is given 

3 (t,) =- x0, To E R” (1.2) 

Let the MVM 

be given. 

U : R1 + conv (R”‘) (1.3) 
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Definitiolz 2. The class LU of admissible controls of the object (l.l), (1.2) consists of all 
measurable selectors of the MVM (1.3). 

Assume that the system (1 . l)-( 1.3) satisfies the following assumptions. 
Al. (a) The MVM F( . , x, u) is measurable with respect to ton R’ for fixed (x, u) E R” x R" ; (b) 

the MVM F(t, . , u) is continuous and satisfies the Lipschitz condition with the constant L with 
respect to x on R” for fixed (t, u) E R1 X R”‘; (c) the MVM F(t, x, -) is continuous with respect to u 
onR”forfixed(t,x)ER’xR”. 

AZ. A function k(.)ELll(R’) exists such that IF(t, x, u)l~k(t) for almost all 
(t,x,u)ER’xR”xR? 

A3. The MVM U: R’+conv(R”) is measurable with respect to t on RI. 
A4. A function 1( .) E Lll(R’) exists such that 1 U(t) 1 Sf(t) for almost all tE R’. 
A5. If the sequence { uK(. )} ;=I from LU weakly converges to u* (. ) E LU, then for any 

absolutely continuous function x( .) the sequence {F(. ,x( -), uK( .))} g=, weakly converges to 

F(.,x(*), u*(9). 
A6. For almost all t E R ’ and any values cx, p 2 0, a + p = 1 and points 

21, %ESt (0) 

d 
k(s)ds 

we have 

aR (t, x1) + BR (t, x2) C R (t, 01% -t- 8~) 

(R (t, x) = uEg(t) F (t, 5, u)) 

and for any u ( + ) E LU we have 

aF (t, x1, u (1)) 4 PF (4 ~2, u (t)) E F (4 ax1 + Bx2, u (0). 

A7. The support function C(F(t, x, u), $) of the set F(t, x, u) is continuously differentiable with 
respecttoxforalmostall(t,u,$)ER’XRmXR”. 

A8. There exists a function m ( -) E L1’ (R ‘) such that for any two vectors 6,) $2 E R”, we have 
the inequality 

Definition 3. The multivalued trajectory of system (l.l), (1.2) corresponding to the admissible 
control u ( a) E LU is the MVM X( * , u) whose value at each instant of time t Z- to is equal to the 
section of the solution set of the differential inclusion (1.1) and (1.2) corresponding to the control 
u(.)ELU. 

Definition 4. The reachability set Y(T) of system (1 .l)-(1.3) is the set of all subsets in the space 
conv(R”) which can be reached during the time [t o, T] from the initial state x0 E R a by the solutions 
of the differential inclusion (1.1) for all possible admissible controls from the family LU, i.e. 
Y(T) = {X(T, u), u(.)ELU}. 

Theorem 1. Assume that conditionsAl-A6 are satisfied. Then the reachability set Y(T) of system 
(l.l)-(1.3) is compact, i.e. Y(T)Ecc(R”).t 

tFor a proof see PLOTNIKOV A. V., Compactness of the reachability set of a differential inclusion containing a control, 

Odessa State University, Odessa, 1988. Unpublished manuscript, UkrNIINTI 11.05.88, No. 1145-Uk88. 
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2. Consider N(Na2) controlled objects whose behaviour is described by differential inclusions 
with control 

xi’ E Fi (t, xi, uJ; xi E R”, ui E Rmi 
(2.1) 

Fi: R1 X R’” X R”i + conv (R”) 

where xi is the phase vector, ui is the control vector and I;i is a MVM. Here and henceforth, i = 1,2, 
. . .) N. 

The initial position of each object is known 

2i (to) = 5i” (2.2) 

Let the MVM 

Ui: RI + conv (R”i) (2.3) 

be given. Denote by LUi the set of admissible controls of object i. Assume that the MVMs 

Fi(., .> a) and Ui( a) satisfy conditions Al-A& 
Consider the following problems of optimal guidance of all N objects to the same point (or the 

same set) in the phase space R”. 

Problem 1. Find the times Ti>to and the controls ui( *) ELUi such that for the corresponding 
multivalues trajectories Xi( - , ui) of system (2.1~(2.3): first, the intersection of the sets Xi( Ti, ui) is 
nonempty, i.e. 

X, (T,, %) n * . * f-l XN (TN, UN) # @ (2.4) 

and, second, the criterion 

J = T, T = mas {Ti} (2.5) 

attains its minimum. 

Definition 5. The collection of admissible controls u* = (ur, , . . . , u,*) is called optimal if the 
corresponding multivalued trajectories Xj( a, ui,) of the system (2.1)-(2.3) satisfy the following 
relationships: 

1.X, (T,, +,J f7 . . . n XN (TN, UN*) # 0; 

2. For anyJE (1,. . . , N} for 7 < T, we have 

XI CT,, UHJ fl e - - n Xj (T,J, UJ) f? . . . n XN (TN, UN*) # 23, 
vuj (*) f? LUJ 

In this case, the multivalued trajectories Xi ( * , ui, ) are called optimal. 

DeJinition 6. We say that the pairs (ui, (e), Xi(. , ui,)) satisfy the maximum principle in the 
respective intervals [to, T] if there exist vector functions &, ( .) which are nontrivial solutions of the 
corresponding differential equations 

&’ = _ lJYz (Fi (t* “;*J;’ ui* (t)), $1 (2.6) 

and the following conditions are satisfied: 
1. The maximum condition 



622 A. V. PLOTNIKOV and L. I. PLOTNIKOVA 

(2.7) 

where xi, (. ) is the solution of the equation 

(Xi*’ (G 9i* (t)) = dC txi (tl ;;*‘f +i* (t)) z c (Fi (t, Lr‘i* (t), ui* (1)), qi* (t)) 

for almost all tE [to, T,]. 
2. The transversality condition 

C (Xi (Ti, Ui*)r $j* (Ti)) = - c (h xi CTi9 ui*), - $i* CT41 
i=l 

Thorem 2. Assume that in Problem 1 the collection of admissible controls u*( .) = {u,*( .), . . , 
uN,( e)} is optimal and Xi(. , ui,) are the corresponding multivalued trajectories of system 
(2.1)-(2.3). Th en 

[to, Til. 
the pairs (ui,( s), Xj(. , CL;,)) satisfy the maximum principle in the intervals 

Proof. Let ui,( .) E LU; be the optimal control of object i and X,( +, CL;,) the corresponding 
multivalued trajectory. Then 

where Y, ( Ti) is the reachability set of object i in time 7’i. 
Therefore, from (2.8) and Assumption A6 we have 

If we put 

Oi = max min [C (Xi, 44) + C (SK, - %)I t 
XiEYIVi) *p%(o) 

(2.9) 

(2.10) 

then oi 2 0. Indeed, if oi < 0, then there exists a set X, E Yi (T,) such that for all Jri E S,(O) we have 
the inequality 

c (Xi, %) + c (SK, 4%) > 0 

[this contradicts inequality (2.9)]. 
We will show that wi = 0 and equality to zero is achieved for some X; = Xi (Ti, Ui,) and some 

44 = 4G.E & (0). 
Indeed, from the relationship X,(T,, ui,) tl SKf 0 it follows that 

ai = c (Xi (Ti, Ui,), 4%) + c (SK, -44 b 0, v+c?i E s, (0) 

The function o;( Tj , $i) is continuous in T, and Jli by the continuity of the support functions and 
the set Y;(Ti). 

If we assume that 
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and therefore oi#O, we obtain 

and the function ~~“(7’~) is continuous. Thus, there exists 7i< Ti such that oio(7i) 2 0. This means 
that 

i.e. Xi(~i, ui,) n SK# 0, which contradicts the optimality of the trajectory Xi(. , ui,). 
If we assume that wi>O and the maximum in (2.10) is attained for XifXi(Ti, ui,), then, as 

above, we obtain a contradiction. 
Thus, a vector Gi = 31: exists such that 

C (Xi (Ti, ui*), qi”) = max C (Xi, *i”) 
Xi"Yi(Ti) 

(2.11) 

c (Xi (Ti, Ui*), $i”) = --c (SK, -a? 
In other words, a vector xi0 E 8X,( Ti, Ui,) exists which satisfies the equalities 

(2.12) 

(Tic1 q’i”) = max C (Xi, qi”) = C (Xi (Ti, ui*), $i”), (2.13) 
XiEYi(Ti) 

(Lx?, $i”) = -c (SK, -qJio) (2.14) 

Then a function xi,( .) exists such that 

xi* (t) E 8X, (6 %*), t fE [to, Til II 5i* (Ti) = 5i” (2.15) 

and hence a function +i,( *)ES~(O) exists such that @i,(t), *i,(t)) = C(Xi(t, Ui,), +i, (t)) for 
almost all TV [to, 7’i] and Jli, (Ti) = IJJF. 

Clearly xi, ( 0) is the boundary solution of the inclusion Xi’ E&(t, Xi) and is therefore an optimal 
solution of this inclusion. Then, using the well-known result from [3], we can write for almost all 

tE [t0~ Til 

(G* (0, $,i* (0) = c vi (4 xi* (9)l a* (Q) 

From (2.15) and (2.16) it follows that for almost all t E [to, Ti] 

c tFi tt* zi* (t)7 Ui* (t)), $i* Ct)) = c CRi Ct> zi* tt))7 9i* Ct)) 

Hence for almost all tE [to, Ti] 

(2.16) 

C (Fi (t, xi* (t), ui* (t)), qi* (t)) = max C (Fi 0, xi* (t>, Uih +i* (t)) 
uLEuim 

Similarly from [3] we obtain that the function +i,( .) satisfies the differential equation (2.6) for 
*i(Ti) = $i”. The theorem is proved. 

Problem 2. Find the times T1 = . . . = TN = T, T> to, and admissible controls Ui,( .) E LUi such 



624 A. V. PLOTNIKOV and L. I. PLOTNIKOVA 

that the corresponding multivalued trajectories Xi(. , Ui,) of system (2.1)-(2.3) satisfy relationship 
(2.4) and the criterion (2.5) attains its minimum. 

Denote by Rc = RK’ x . . . x R KN the Cartesian product of the Euclidean spaces R K1, . . , R KN. 
The elements x0 of the space R. are written in the form x0 = (xi , . , . , xN), X;E RKz. 

We define the distance in the space RO by the formula 

p (30, Y,) = max {di (xi, pi)), x0 = (x1, . . ., wJr go = h, . . ., YIV) 

Let us reduce the N-object Problem 2 to a problem with one fictitious object in the space RO . We 
introduce the following notation in Problem 2 [ 1] 

x,, = (51, . . ., XN), .-& E- R”; ug = (ui, . . ., UN) 

ui E R”l ; Fo (t, xoc,, uo)>= F, (t, 51, u,) x . . . x FN (6 XN, UN) 

Then the system of differential inclusions (2.1)-(2.3) takes the form 

20’ E F, (1, 20, uo), 50 (to) = &J”, 20’ = (x,‘, . . , 5N”) (2.17) 

Condition (2.4) may be rewritten in the form 

H = Xo CT, uo) n G # ~2 
G = {x0 = (q, . . ., XN) E Ro, xi = . , . = XN} (2.18) 

Xo (T, %) = Xi (p, ui> x . . . x XN (T, UN) 

Clearly, if the mappings Fi(. , . , a) and Ui( .) satisfy conditions Al-A8, then the mappings 

&,(a, .> .)and&(.)=U,(.)x... x U,( .) also satisfy conditions Al-A% 
Like the above (see the reference cited in the footnote on p. 620), we can probe that Problem 2 is 

equivalent to the following problem. 

Problem 3. Find the time T> to and an admissible control uo( 3) E LUa such that the multivalued 
trajectory X0(. , uo) of system (2.17) satisfies condition (2.18) and the criterion (2.5) attains its 
minimum. 

Remark. If u,,(a) E LUa is the optimal control in Problem 3, it can be represented in the form 

u0(.) = (%(‘)r . . ., uN( a)), ui( -) ELLJ~ and the controls ui( *) are optimal in Problem 2. 
If ui (. ) E LUi are optimal in Problem 2, then the control ug ( - ) = (UI (. ), . . . , UN (. ) ) is optimal in 

Problem 3. 

Definition 7. We say that the pairs (Ui,( . ), Xi( *) ) satisfy the maximum principle in the interval 
[to, ?‘i] if a vector zE R” and vector functions +i, ( *) exist which are respectively solutions of the 
system of differential inclusions (2.6) and the following conditions are satisfied: 

1. The maximum condition, which differs from the maximum condition in Definition 6 in that it 
must hold for at least one i for almost all t E [to, T]. 

2. The transversality condition 

Theorem 3. Assume that conditions Al-A8 hold and that, in Problem 2, T is the minimum value 
of the functional (2.~9, ui, ( 0) E LUi is the optimal control and Xi( * , ui, ) are the corresponding 
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multivalued trajectories of system (2.1)-(2.3). Then the pairs (Ui,( e), Xi( *, Ui,)) satisfy the 
maximum principle in [to, T]. 

Proof. By the above remark, the control uo, = (ur, (e), . . . , UN,(*)) is optimal and 

X0 (*, %I*) = ?I Xi (*, Ui*) 
i=l 

is the corresponding multivalued trajectory in Problem 3. Therefore, 

X, (T, G,J E Yo (0, Xo (T, UW) U G f 0 

Following the same scheme as in the proof of Theorem 2, we obtain the existence of a vector 
function IJJ~, ( .)-the solution of system (2.6)-such that 

c (F, (t, x0 (t), uo* (t)), qo* (t)) = max C (Fo (h 20 WY u0h *o+ W 
%EU.W 

(2.19) 

for almost all t E [to, T] 

c (X0 (TY Uo*)r *o* (TN = --c (G, -*o* (T)) 

Relationship (2.20) may be rewritten as 

2 = (Zr, . . .,2~), 2, = . . . = ZN = 2, Z E R" 

From (2.19) and (2.21) we obtain 

(2.20) 

(2.21) 

c (Xi (T, Ui*), qi* (T)) = (f, 4i* (T)) 

and there exists at least one i such that condition (2.7) is satisfied for almost all TV [to, T]; I&* ( a) is 
the solution of system (2.6). The theorem is proved. 
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